

QUANTOMETER

QUANTOMETER

..........

DESIGN AND FUNCTION

CPT Quantometers have been designed in order to provide our customers with reliable and inexpensive measuring instruments for secondary flow measurements.

Our great experience in designing and manufacturing of turbine and rotary gas meters resulted in the development of industrial quantometers. Taking into account our customers' demands we created the instrument with excellent metrological characteristics and operating performance close to performances of the turbine gas meters designed for custody transfer measurements.

Other advantages of the CPT Quantometers are as follows: high quality, easy maintenance, wide range of external devices that can co-operate with the quantometers, e.g. volume correctors, data loggers, data transmission systems. Due to that the CPT Quantometers are well accepted by our domestic and foreign customers. The basic components of the CPT Quantometer are as follows:

- pressure resistant meter body
- inlet flow conditioner
- measuring cartridge with the turbine wheel
- magnetic coupling as the transferring element between measuring cartridge and the index

index head

Gas	Chemical symbol (formula)	Density ρ [kg/m³]	Density related to air	Gas meter execution
Argon	Ar	1,66	1,38	standard IIB
Butane	C4H10	2,53	2,10	standard IIB
Carbon dioxide	CO ₂	1,84	1,53	standard IIB
Carbon monoxide	CO	1,16	0,97	standard IIB
Ethane	C ₂ H ₆	1,27	1,06	standard IIB
Ethylene	C ₂ H ₄	1,17	0,98	standard IIB
Helium	He	0,17	0,14	standard IIB
Methane	CH4	0,67	0,55	standard IIB
Natural gas	-	~0,75	~0,63	standard IIB
Nitrogen	N ₂	1,16	0,97	standard IIB
Propane	C ₃ H ₈	1,87	1,56	standard IIB
Acetylene	C ₂ H ₂	1,09	0,91	special IIC
Hydrogen	H ₂	0,084	0,07	special IIC
Air	-	1,20	1,00	standard IIB

table 1: Physical properties of most popular gases that may be measured with the CPT Quantometer; density at 101,325 kPa and at 20°C

GENERAL TECHNICAL DATA

table 2:

DN			Maximum	Minimum	LF	
mm	inch	G	flow Q _{max} [m³/h]	flow Q _{min} [m³/h]	pulse rate [m³/pulse]	
50	2	40	65	6		
50	Z	65	100	10	0,1	
	3	100	160	8		
80		160	250	13	1	
		250	400	20		
100	4	160	250	13		
		250	400	20	1	
		400	650	32		
150		400	650	32	1	
	6	650	1000	50	Ι	
		1000	1600	80	10	

- pressure rating:
- —• nominal diameter:
- meter bodies:
- flow:
- —• rangeability:
- ---- temperature range:
 - allowed medias:
 - operating position:

PN16, PN20, ANSI150

DN50 up to DN150 standard range, other on request

aluminium

see table 1

6 to 1600 m^3/h other on request

1:20 minimum at atmospheric pressure Some smaller size meters have reduced ranges.

gas temperature ambient temperature

horizontal or vertical

-20°C to +60°C -25°C to +70°C

		DN50	DN80	DN 100	DN 150
А	mm	100	120	150	180
В	mm	65	80	100	127
С	mm	18	21	29	50
E	mm	140	150	165	190
F	mm	65	77	91	116
G	mm	199	211	225	243
Н	mm	252	278	305	351
Weight	kg	3,6	5,3	7,4	11,6
M16 bolt No x L		4 x 180	8 x 200	8 x 235	8 x 270

Note: No and lenght of bolts is for PN16 flanges only.

fig.1 Basic dimensions of CPT Quantometer

MEASUREMENT OUTPUTS

PRESSURE OUTPUT

The operating pressure (reference pressure) can be taken from the pressure tap, marked pr, located on one side of the meter body.

PULSE SENSORS

The mechanical index unit indicates the actual volume of the measured gas at operating temperature and operating pressure. It can be rotated axially by 350° in order to facilitate the readings and enable easier connection of pulse sensor plugs.

The index unit is provided with one low frequency LFK reed contact pulse transmitter, as a standard. On request the index may be equipped with: $\frac{1}{2}$

- LFI inductive pulse sensor (NAMUR)
- HF inductive pulse sensor (NAMUR)

HF1, HF2	LFI, HF3	LFK, AFK
Ui = 16 V DC	Ui = 15,5 V DC	Ui = 15,5 V DC
li = 25 mA	li = 52 mA	li = 52 mA
Pi = 64 mW	Pi = 169 mW	Pi = 169 mW
Li = 50 μH	$Li\approx 40~\mu H$	Li ≈ 0
Ci = 30 nF	Ci = 28 nF	Ci≈0

table 3: Permissible supply parameters of intrinsically safe circuits.

fig. 2 Location of measurement outputs (top view)

, LFK 2 LFI 2 HF 2

The CPT Quantometers may be provided with up to 7 pulse sensors:

LFK	 low frequency reed contact pulse sensor 	LFK 1
LFI	- low frequency inductive pulse sensor	LFI 1,
HF	- inductive pulse sensor in the index unit	HF 1,
HF	- inductive pulse sensor over the turbine wheel	HF 3
AFK	– anti-fraud reed contact	AFK

The turbine wheel, as a standard, is made of aluminium. This allows to provide each CPT Quantometer with one HF3 inductive pulse sensor. There are no extra costs due to the replacement of the turbine wheel.

₽'n No	Socket 1 pulse sensors	Socket 2 pulse sensors	$2^{(-)} \overset{3^{(-)}}{\circ} 4^{(+)}$
1 - 4	LFK 1 (standard)	LFK 2	$(1(-) \circ 5(+))$
2 - 5	LFI 1	LFI 2	
3 - 6	HF 1 or AFK	HF 2	
	/		

fig. 3 Pulse sensor pin numbering in sockets 1 and 2 installed in the index. The sockets match the TUCHEL plug No C091 31H006 100 2

fig. 4 Pulse sensor pin numbering in socket of the HF3 pulse transmitter installed in the meter body. The sockets match the TUCHEL plug No C091 31D004 100 2

SELECTION OF CPT QUANTOMETER

In order to choose the proper size of the turbine quantometer the following operating condition parameters should be known: flow range $Q_{\min m}$ and $Q_{\max m}$, pressure range $p_{\min m}$ and $p_{\max m}$, gas temperature range $T_{\min m}$ and $T_{\max m}$ Usually flow range is given at standard conditions: $Q_{\min s}$ and $Q_{\max s}$.

Base conditions (NPTconditions: base temperature and base pressure) are country specific.

The following formula is to be used when converting standard flow cubic meters per hour into actual flow at operating conditions:

$$Q_{\min m} = Q_{\min s} \cdot Z \cdot \frac{P_s}{P_{\max m}} \cdot \frac{T_{\min m}}{T_s} \qquad Q_{\max m} = Q_{\max s} \cdot Z \cdot \frac{P_s}{P_{\min m}} \cdot \frac{I_{\max m}}{T_s}$$

The quantometer size should be chosen (using actual flow at operating conditions) according to the following formula:

$$Q_{\min} (Q_{\min c}) < Q_{\min m} \qquad Q_{\max} > Q_{\max} m$$

where Q_{min} and Q_{max} – minimum and maximum flow, according to table 2. The measurement range increases with increase of operating pressure. The corrected $Q_{min c}$ value decreases, and it may be calculated from the following formula:

$$Q_{min c} = Q_{min} \cdot \sqrt{\rho_a / \rho_m}$$
 where $\rho_m = (p_m + 1) \cdot \rho_s$

DEFINITION:

$Q_{\min m}$	=	minimum flow at operating conditions [m³/h]	P _m	=	gauge pressure at operating conditions [bar g]
$Q_{\text{max m}}$	=	maximum flow at operating conditions [m ³ /h]	$\rho_{_{m}}$	=	density at operating conditions [kg/m ³]
$Q_{\min s}$	=	minimum flow at base conditions [Nm ³ /h]	$\boldsymbol{\rho}_{a}$	=	standard density of air 1,2 kg/m ³
$Q_{\text{max s}}$	=	maximum flow at base conditions [Nm ³ /h]	P _{max m}	=	maximum operating pressure [bar a]
$Q_{min C}$	=	corrected minimum flow [m ³ /h]	P _{min m}	=	minimum operating pressure
Ps	=	base pressure (according			[bar a]
		to national standards) [bar a]	$T_{max\ m}$	=	maximum operating
Ts	=	base temperature			temperature [K]
		(according to national standards) [K]	T _{min m}	=	minimum operating temperature [K]
ρ_s	=	standard density of the gas [kg/m ³], see table 1	Z	=	real gas factor at operating conditions (for PN16 Z \approx 1)

COMMON S.A. has continuing program of product research and development. Technical specifications and construction may change due to improvements. This publication serves as general information only, and all specifications are subject to confirmation by COMMON S.A.

PRESSURE LOSS

The inevitable pressure loss during the gas flow through the meter is determined at the atmospheric conditions.

To determine pressure losses at other, higher pressures, the following formula applies:

fig. 5 Diagram of pressure loss related to ρ = 1,2 kg/m^3 $\,$

$$\Delta p_1 = (\frac{\rho_s}{\rho_a}) \cdot (\frac{p_m + p_s}{p_s}) \cdot \Delta p$$

DEFINITION:

- $\Delta p_1 = pressure loss at p$
- Δp = pressure loss from the diagram, fig. 5
- p_m = gauge pressure at operating conditions [bar g]
- $\rho_s = \text{standard density}$ of gas [kg/m³]
- $\rho_a = \text{standard density}$ of air 1,2 kg/m³
- p_s = base pressure (1,01325 bar)

INSTALLATION AND OPERATION RECOMMENDATIONS

- Meters should be shipped in their original package to the place of installation.
- The measured gas should be clean, dry and free from solid impurities. It is recommended that the upstream pipe installation is to be equipped with a filter (10 micron).
- Prior to installation the upstream and downstream pipe flanges should be aligned properly.
- The gas flow should be in accordance with the arrow placed on the meter body.
- -• When used outdoors the meter should be protected against direct weather influence.
- When starting the gas flow through the installation, the values should be opened slowly to ensure a gradual increase of pressure.

ALWAYS REMEMBER TO START UP THE METERS IN A PROPER WAY!

COMMON S.A.

ul. Aleksandrowska 67/93 91-205 Łódź, Poland tel. + 48 42 253 66 57 + 48 42 253 66 58 fax + 48 42 253 66 99 http://www.common.pl e-mail:common@common.pl Your Partner