The CLS' electronic level switch is used for point level control (on/off). Liquids and light bulk materials can be monitored.

Characteristics

Type

Technical Data

Housing
Sealing of housing cover
Protection class
Cable gland
(Relay execution)
Operating temperature $T_{\text {o }}$
Ambient temperature T_{A} Storage temperature
Operating pressure p_{\circ} Test pressure Fail-safe function (closed circuit current) Interface setting Terminals
Weight

Industrial execution
Universal use, for liquids and light
bulk materials
No calibration required
Horizontal, vertical and oblique mounting
Interface application (oil/water)
Connection housing 350° rotable
Maintenance free

See data sheet LSWG04E

Polycarbonate grey (RAL 7035)
Neoprene
IP66 in accordance with IEC 529
M20 x 1,5 for cables $\varnothing 5$ to 9 mm
(PG 13.5 for cables $2 \times \varnothing 5$ to 8 mm)
$-40^{\circ} \mathrm{C}$ to $+140^{\circ} \mathrm{C}\left(\mathrm{at} \mathrm{T}_{\mathrm{A}}=20^{\circ} \mathrm{C}\right)$
$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
max. 90 bar (at $\mathrm{T}_{\mathrm{o}}=20^{\circ} \mathrm{C}$ with water)
max. 150 bar
LLA (low level alarm) / HLA (high level alarm)
adjustable by jumper
by jumper
2,5 mm²
approx. $0,75 \mathrm{~kg}$ (standard type)

Electronic Inserts

Depending on use, the corresponding electronic inserts are available in the following types:

AC relay

Operating voltage
Switching current
Switching voltage
Switching capacity
20 to 250 VAC, $50 / 60 \mathrm{~Hz}$ max. 4A (Ω load)
250 VAC / 100 VDC (0,5 A)

AC/DC two wire switch
Operating voltage
Switching current
Current requirement Voltage drop over switch

DC NAMUR (not Ex)
Operating voltage
Switching current
8.2 VDC ± 5 \% (DIN 19234)

On: $\geq 2.2 \mathrm{~mA}$
Off: $\leq 1.0 \mathrm{~mA}$

DCPNP/NPN

Operating voltage
Switching current Min. load resistance

12 to 32 VDC max. $350 \mathrm{~mA} D C$
$\mathrm{R} \geq 35 \Omega$ (12 VDC) $\mathrm{R} \geq 92 \Omega(32 \mathrm{VDC})$

DC relay

Operating voltage
Switching current
Switching voltage
Switching capacity

24 VDC ± 10 \% max. 4 A (Ω load) max. 250 VAC/ 100 VDC (0,5 A)
1000 VA; 120 W

Mounting element

The mounting element shall be selected in accordance with the required manner of mounting (e.g. thread connection or flange), material and flange facing. The transmitter (housing) is 350° rotable against the mounting element, i.e. after mounting, the cable entry can be turned to the desired position.

Material (at option)
Connection with thread

Gasket

Sanitary connection
Triclamp
Flange connection
Standard flange connections

Measuring probe

The probe in conjunction with the mounting element forms a pressure tight unit and therefore is suitable for use in pressurized vessels.

Rod probe
Probe insulation
Extension tube
O-ring gasket
Min. mounting length
Max. mounting length
Length tolerance
Mounting length/switch point
Switching hysteresis
Switching delay
Lateralload

```
1.4435(316L)
notregenerated, purePTFE
1.4435(316L)
EPDM or FPM (Viton)
G 1" }175\mathrm{ mm (standard)
NPT 1"-11.5 }165\mathrm{ mm
60 mm
\pm0.5 %
see drawing on the right
max. 4 mm
0.6 s (on and off switching)
120 N on probe tip at T
175 mm mounting length
```


Application range

The CLS' electronic level switch based on impedance measurement, can be used to control liquids and light bulk materials as well as for interface control. The range of applications is determined by the dielectric constant, the viscosity and the conductivity of the medium to be controlled. Medium with a dielectric constant between $\varepsilon_{r}=2$ and $\varepsilon_{r}=80$ can be controlled without calibration or previous adjustments. Mounting in horizontal, vertical and oblique position is possible.

Medium interface applications

The medium to be detected, whether conducting or non-conducting, must have an $\varepsilon_{\mathrm{r}}>$ approx. 40 and the second medium must be non-conducting with an $\varepsilon_{\mathrm{r}}<6$.

