F Fuji Electric

TIME DELTASERIES < TIME DELTA-C> **ULTRASONIC FLOWMETER <**Advanced type>

DATA SHEET

FSV-2, FSS, FLY

This flowmeter is a clamp-on type ultrasonic flow meter based on transit-time measuring method.

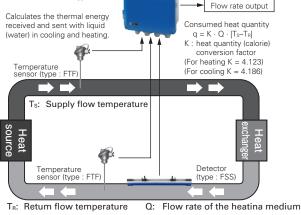
Making full use of the latest electronics and digital signal processing technologies, the flowmeter is designed for 2-path system capable of simultaneously measuring 2 pipes, and energy calculation by connecting with temperature sensor, while keeping with the resistance to air bubbles. It is an effective solution for measurement and management of the energy used in energy-saving systems such as heating and air conditioning applications.

FEATURES

1. Advanced function

- · Improved stability and accuracy by using 2-path system
- · Capability of simultaneously measuring 2 pipes by one transmitter (Difference calculation possible).
- Energy measurement in combination with temperature sensor

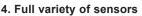
2. High accuracy


The flowmeter is designed for high accurary (better than ±1.0% of rate) by dynamic correction of fully-developed flow profile. Reynolds Number is calculated and a meter factor (K) is automatically applied for best accuracy at all flow velocities. Further, the adoption of new sound velocity measurement system permits measurements of fluids of unknown sound velocity. Moreover, affection from fluid temperature and pressure is negligible (Auto-Temp./ Press. compensation).

3. Excellent resistance against aerated flow

Fuji's unique ABM feature improves measurement reliability for different flow like slurries, sludge, raw sewage and bubble-contained flow (acceptable up to air bubble of 12% volume at 1m/s velocity).

FUNCTIONAL DIAGRAM


Consumed energy calculation function Flow transmitter (type:FSV) Calculation output

Fuji Electric Co., Ltd.

Flow transmitter (FSV)

The flowmeter can be used with various types of sensors applicable for wide range of pipe size (ø13 to ø6000mm) and fluid temperature (-40 to +200°C).

5. Quick response

With the use of high-speed micro-processor suited for digital signal processing, the fast response time is realized.

6. Multi-lingual

The following languages are supported for display: Japanese (Katakana), English, German French, and Spanish.

7. Excellent performance and easy operation

LCD and function keys are allowing easy configuration and trouble shooting.

- LCD with back light
- Easy mounting of sensor
- Extendable rail type detector up to ø50 to ø1200mm
- Trouble shooting
- Easy operation with keypad on the front surface of the flow transmitter

2-channel measurement (for 2 pipes) (1) Analog signal output is configurable up to 2 items from below • Path 1 flow rate Path 2 flow rate Flow transmitte Average value (FSV) Added value Subtracted value (2) Digital output is configurable up to 4 items. Detector (FSSC) 2-path measurement (for 1 pipe) (1) Analog signal output is configurable up to 2 items from below. Path 1 flow rate Path 2 flow rate Flow transmitter Average value (FSV) (2) Digital output is configurable up to 4 items Detector (FSSC) EDS6-148a Date Dec. 10, 2013

SPECIFICATIONS

Operational specifications

System configuration:

Single-path or 2-path system with a flow transmitter (Model FSV) and a detector (Model FSS) (2-pipe version is also available)

See functional diagram for the definition of 2-path and 2-pipe measurement.

Energy measurement by transmitter, detector, and resistance bulb (pt100).

Either 2-path/2-pipe measurement or energy measurement can be selected.

Applicable fluid:

Homogenous liquid where the ultrasonic signal can be transmitted

Bubble quantity: 0 to 12vol% (for pipe size 50A, water, velocity 1m/s)

Fluid turbidity: 10000mg/L max.

Type of flow: Fully-developed turbulent or laminar flow in a full-filled pipe

Flow velocity range:

0 to ±0.3 ... ±32m/s

Power supply: 100 to 240V AC +10%/-15%, 50/60Hz

Signal cable (between detector and converter):

Coaxial cable (150m max.) applicable up to 300m depending on the condition. Heat resistance: 80°C

Installation environment:

Non-explosive area without direct sunlight, corrosive gas and heat radiation.

Ambient temperature:

Flow transmitter: -20 to +55°C Detector: -20 to +60°C

Ambient humidity:

Flow transmitter: 95%RH max.

Detector: 90%RH max.

Grounding: Class D (100 Ω)

Arrester: Provided as standard at power supply

Applicable piping and fluid temperature:

2-pipe/energy calculation: ø13 to ø6000mm

2-path measurement: ø50 to ø6000mm

Detector Type	Pipe size (inner diameter) ø (mm)	Mounting method	Fluid temper- ature range (°C) (Note 2)	Applicable pipe material (Note 1)
FSSA	25 to 50	V method	-20 to +100	Plastic (PVC, Others)
FSSA	50 to 225	vinetiou	-20 10 +100	
FSSC	50 to 600	V method	-40 to +120	
F350	300 to 1200	Z method	-40 (0 +120	Plastic (PVC, Others)
FSSD	13 to 100	V method	-40 to +100	Matal nine (Stainlage steel
FOOL	200 to 1000	V method	10 40 100	Metal pipe (Stainless steel, Carbon steel, Copper, Alu-
FSSE	500 to 6000	Z method	-40 to +80	minum, Others)
FOOL	50 to 200	V method	40 to 1 200	
FSSH	150 to 400	Z method	-40 to +200	

Note1) Please select the FSSC type or FSSE type if following condition. • When pipe material is PP and thickness is 15mm or more

• When pipe material is PVDF and thickness is 9mm or more • When pipe material is cast iron pipe, lining pipe, old steel

pipe or others through which the ultrasonic signal could not be transmitted easily.

Lining material: Tar epoxy, mortar, rubber, etc.

* If the lining is not properly glued to a pipe, the measurement may be impossible.

Note2) When silicon grease is used as acoustic coupler, Fluid temperature limit is 0 to 60°C no matter what detector is selected.

Note3) Heat-resistant shock temperature: for 30 minutes at 150°C For the detector FSSA or FSSC

Performance specifications

Rated accuracy:

Rated accuracy.										
Pipe size (diameter)	Flow velocity	Accuracy								
ø (mm)	(m/s)	Plastic pipe	Metal pipe							
05 to 50	2 to 32	±2.0% of rate	-							
25 10 50	0 to 2	±0.04m/s	-							
50 to 225	2 to 32	±1.0% of rate	±2.0% of rate							
50 10 225	0 to 2	±0.02m/s	±0.04m/s							
50 to 200	2 to 32	±1.5% of rate								
50 10 200	0 to 2	±0.03m/s								
200 to 1200	2 to 32	±1.0% of rate								
200 10 1200	0 to 2	±0.02m/s								
12 to 50	2 to 32	2 to 32 ±1.5% to ±2.5% of								
13 10 50	0 to 2	±0.03 to ±0.05m/s								
50 to 100	2 to 32	±1.5% of rate								
50 10 100	0 to 2	±0.03m/s								
200 to 200	2 to 32	±1.5% of rate								
200 10 300	0 to 2	±0.03m/s								
200 to 1200	0.75 to 32	±1.5% of rate								
300 10 1200	0 to 0.75	±0.0113m/s								
1200 to 6000	1 to 32	±1.0% of rate								
1200 10 6000	0 to 1	±0.02m/s								
E0 to 200	2 to 32	±1.0% of rate								
50 10 500	0 to 2	±0.02m/s								
200 to 400	0.75 to 32	±1.0% of rate								
300 10 400	0 to 0.75	±0.0075m/s								
	Pipe size (diameter)	$\begin{array}{ c c c c c } \hline \mbox{Pipe size (diameter)} & Flow velocity (m/s) \\ \hline \mbox{Pipe size (diameter)} & flow velocity (m/s) \\ \hline \mbox{25 to 50} & 2 \ to 32 \\ \hline \mbox{0 to 2} \\ \hline \mbox{2 to 32} \\ \hline \mbox{0 to 2} \\ \hline \mbox{2 to 32} \\ \hline \mbox{0 to 2} \\ \hline \mbox{2 to 32} \\ \hline \mbox{0 to 2} \\ \hline \mbox{2 to 32} \\ \hline \mbox{0 to 2} \\ \hline \mbox{2 to 32} \\ \hline \mbox{0 to 2} \\ \hline \mbox{2 to 32} \\ \hline \mbox{0 to 2} \\ \hline \mbox{2 to 32} \\ \hline \mbox{0 to 2} \\ \hline \mbox{2 to 32} \\ \hline \mbox{0 to 2} \\ \hline \mbox{2 to 32} \\ \hline \mbox{0 to 2} \\ \hline \mbox{2 to 32} \\ \hline \mbox{0 to 2} \\ \hline \mbox{2 to 32} \\ \hline \mbox{0 to 2} \\ \hline \mbox{2 to 32} \\ \hline \mbox{0 to 2} \\ \hline \mbox{2 to 32} \\ \hline \mbox{0 to 2} \\ \hline \mbox{3 00 to 1200} & \hline \mbox{1 to 32} \\ \hline \mbox{0 to 1} \\ \hline \mbox{2 to 32} \\ \hline \mbox{0 to 1} \\ \hline \mbox{3 0 to 300} & \hline \mbox{2 to 32} \\ \hline \mbox{0 to 1} \\ \hline \mbox{3 0 to 400} \\ \hline \mbox{0 to 32} \\ \hline \mbox{3 0 to 400} \\ \hline \mbox{0 to 5 to 32} \\ \hline \mbox{3 0 to 400} \\ \hline \mbox{0 to 5 to 32} \\ \hline \mbox{3 0 to 400} \\ \hline \mbox{0 to 5 to 32} \\ \hline \mbox{0 to 5 to 5 to 32} \\ \hline 0 to 5 to 5 to 5 to 5 \\ \hline \mbox{0 to 5 to 5 to 5 to 5 to 5 to 5 \\ \hline \mbox{0 to 5 to 5 to 5 to 5 to 5 to 5 \\ \hline \mbox{0 to 5 to 5 to 5 to 5 to 5 to 5 \\ \hline \mbox{0 to 5 to 5 to 5 to 5 to 5 to 5 \\ \hline \mbox{0 to 5 to 5 to 5 to 5 to 5 to 5 \\ \hline \mbox{0 to 5 to 5 to 5 to 5 to 5 to 5 \\ \hline \mbox{0 to 5 to 5 to 5 to 5 to 5 to 5 \\ \hline \mbox{0 to 5 to 5 to 5 to 5 to 5 \\ \hline \mbox{0 to 5 to 5 to 5 to 5 to 5 \\ \hline \mbox{0 to 5 to 5 to 5 to 5 to 5 \\ \hline \mbox{0 to 5 to 5 to 5 to 5 to 5 \\ \hline \mbox{0 to 5 to 5 to 5 to 5 to 5 \\ \hline \mbox{0 to 5 to 5 to 5 to 5 to 5 to 5 \\ \hline \mbox{0 to 5 to 5 to 5 to 5 to 5 to 5 \\ \hline \mbox{0 to 5 to 5 to 5 to 5 to 5 to 5 \\ \hline \mbox{0 to 5 to 5 to 5 to 5 to 5 to 5 \\ \hline \mbox{0 $	$\begin{array}{c c} \mbox{Pipe size (diameter)} & \mbox{Flow velocity} & \mbox{Accuracy} & \mbox{Plastic pipe} \\ \mbox{25 to 50} & \begin{tabular}{ c c c } 2 to 32 & \pm 2.0\% \mbox{ of rate} \\ \hline 0 to 2 & \pm 0.04 \mbox{m/s} \\ \end{tabular} \\ \begin{tabular}{ c c } 50 to 225 & \begin{tabular}{ c c } 2 to 32 & \pm 1.0\% \mbox{ of rate} \\ \hline 0 to 2 & \pm 0.02 \mbox{m/s} \\ \end{tabular} \\ \begin{tabular}{ c c } 50 to 200 & \begin{tabular}{ c } 2 to 32 & \pm 1.5\% \mbox{ of rate} \\ \hline 0 to 2 & \pm 0.02 \mbox{m/s} \\ \end{tabular} \\ \begin{tabular}{ c } 2 to 32 & \pm 1.5\% \mbox{ of rate} \\ \hline 0 to 2 & \pm 0.03 \mbox{m/s} \\ \end{tabular} \\ \begin{tabular}{ c } 2 to 32 & \pm 1.5\% \mbox{ of rate} \\ \hline 0 to 2 & \pm 0.02 \mbox{m/s} \\ \end{tabular} \\ \end{tabular} \\ \begin{tabular}{ c } 3 to 50 & \begin{tabular}{ c } 2 to 32 & \pm 1.5\% \mbox{ of rate} \\ \hline 0 to 2 & \pm 0.03 \mbox{m/s} \\ \end{tabular} \\ \begin{tabular}{ c } 2 to 32 & \pm 1.5\% \mbox{ of rate} \\ \end{tabular} \\ \end{tabular} \\ \begin{tabular}{ c } 2 to 32 & \pm 1.5\% \mbox{ of rate} \\ \end{tabular} \\ \end{tabular} \\ \begin{tabular}{ c } 2 to 32 & \pm 1.5\% \mbox{ of rate} \\ \end{tabular} \\ \end{tabular} \\ \end{tabular} \\ \begin{tabular}{ c } 2 to 32 & \pm 1.5\% \mbox{ of rate} \\ \end{tabular} \\ \end{tabular} \\ \end{tabular} \\ \begin{tabular}{ c } 2 to 32 & \pm 1.5\% \mbox{ of rate} \\ \end{tabular} \\ \end{tabular} \\ \end{tabular} \\ \begin{tabular}{ c } 1 to 32 & \pm 1.0\% \mbox{ of rate} \\ \end{tabular} \\ \end{tabular} \\ \end{tabular} \\ \begin{tabular}{ c } 2 to 32 & \pm 1.0\% \mbox{ of rate} \\ \end{tabular} \\ tabu$							

Response time:

1s (standard mode)

0.2s as selected (quick response mode)

Power consumption:

30VA max. (AC power supply)

Functional specifications

Analog signal:

4 to 20mA DC (2 points maximum) Load resistance: 600Ω max.

Digital output:

Forward total, reverse total, totalized energy, temperature alarm, and cooling/heating modes, alarm, acting range, flow switch, total switch

assignable arbitrarily

Transistor contact (isolated, open collector)

· Outputs: 4 points max.

- Normal: ON/OFF selectable
- · Contact capacity: 30V DC, 50mA
- Output frequency: 100P/s max. (pulse width: 5, 10, 50, 100, 200, 500, 1000ms)

Serial communication (option):

RS-485 (MODBUS), isolated, arrester incorporated

Connectable quantity: 31 units

Baud rate: 9600, 19200, 38400bps

Parity: None/Odd/Even selectable Stop bits: 1 or 2 bits selectable

Cable length: 1km max.

Data: Flow velocity, flow rate, forward total, reverse total, status, energy flow, energy calculation for cooling system, energy calculation for heating system, temperature, etc.

Display device:

2-color LED (Normal: green, Extraordinary: red) 2 indicator lamps (for path 1 and 2)

LCD with 2 lines of 16 characters and back light

Indication language:

Japanese (Katakana)/English/French/German/Spanish (changeable)

Flow velocity/flow rate indication:

Instantaneous flow velocity, instantaneous flow rate indication (minus indication for reverse flow)

Numerals: 8 digits (decimal point is counted as 1 digit) Unit: Metric/Inch system selectable

Velocity	m/s
	L/s, L/min, L/h, L/d, kL/d, ML/d, m ³ /s, m ³ /min, m ³ /d, km ³ /d, Mm ³ /d, BBL/s, BBL/min, BBL/h, BBL/d, kBBL/d, MBBL/d

Energy indication:

indication of energy consumption

energy consumption of heat medium

energy flow:

MJ/h, GJ/h, BTU/h, kBTU/h, MBTU/h, kW, MW totalized energy:

MJ, GJ, BTU, kBTU, MBTU, kWh, MWh

J: Joule

BTU: British thermal unit

W: Watt

- Note1) Minus-totalization of thermal energy is not available when the flow direction is reverse.
- Note2) The amount of thermal energy is detected as zero when the difference in temperature is 0.5°C or less.
- Temperature indication: °C, K

Operation mode:

Cooling mode, Heating mode, Cooling/heating automatic change mode

Temperature input:

Input type: Resistance bulb (Pt100, 3-wire)

Input range: -40 to + 200°C Indication accuracy (at 23°C): ±1.0% FS

Configuration: Fully configurable from the 4-key pad $(\mathsf{ESC}, \triangle, \triangleright, \mathsf{ENT})$

Zero adjustment: Set zero/Clear available

Damping: 0 to 100s (every 0.1s) for analog output and flow velocity/flow rate indication

Low flow rate cutoff:

0 to 5m/s in terms of flow velocity

Alarm:	Digital output available for Hardware
	fault or Process fault

Output setting: Measuring Output type Analog signal Digital output mode Path 1 flow rate 2 points max. (select from the 2-path Path 2 flow rate 4 points max. lieft column) Average value Path 1 flow rate Path 2 flow rate 2 points max. Average value (select from the left 4 points max. 2-pipe Added value column) Subtracted value Path 1 flow rate Energy flow 2 points max. 4 points max. Energy flow

Burnout:

Analog output: Hold/Overscale/Underscale/Zero selectable

Flow rate total: Hold/Count selectable Burnout timer: 0 to 100s (every 1s)

Bi-directional range:

Forward and reverse ranges configurable independently. Hysteresis: 0 to 10% of working range Working range applicable to digital output

Auto-2 range:

2 forward ranges configurable independently Hysteresis: 0 to 10% of working range Working range applicable to digital output

Flow switch:

Lower limit, upper limit configurable independently Digital output available for status at actuated point

Total switch:

Forward total switching point configurable Digital output available when actuated

External total preset:

Preset total settable upon contact input setting

Backup of power failure:

backup by non-volatile memory

Physical specifications

Type of enclosure:

Flow transmitter: IP67 Detector: FSSA, FSSC: IP65 (When waterproof BNC connector is provided) FSSD, FSSH: IP52 FSSE: IP67 (Silicone rubber is filled up on the terminal block)

FSSC, FSSE (waterproofing):

IP68 (submerged resistant structure for 5days)

Mounting method:

Flow transmitter: Mounted on wall or by 2B pipe Detector: Clamped on pipe surface

Acoustic coupler:

Acoustic coupler is a filling between detector and pipe. Type of acoustic coupler:

Туре	Silicone rubber (KE-348W)	Silicone grease (G40M)	Silicone-free grease (HIGH Z)	Grease for high temperature (KS62M)		
Fluid temperature	-40 to +150°C	-30 to +150°C	0 to +60°C	-30 to +250°C		
Teflon piping	×	0	0	0		

In case of Teflon piping, use grease.

Material: Flow transmitter: Aluminum alloy

Sensor housing	Cover	Guide rail
PBT	-	SUS304
PBT	-	Aluminum alloy + PBT
PBT	-	Aluminum alloy + PBT
PBT	SUS304	-
SUS304	SUS304	Aluminum alloy
	PBT PBT PBT PBT	PBT - PBT - PBT SUS304

Signal cable:

- · Structure: Heat-resisting high-frequency coaxial cable
- Sheath: Flame-resisting PVC
- Outer diameter: ø7.3mm

Terminal treat	tment:							
Cable type		FLYD						
Applicable detector		FSSA, FSSC, FSSD, FSSE	E, FSSH					
Terminal of flow tran	smitter side	Rod terminal ×2 Amplifier terminal (M3) ×1						
Terminal of detector	r side	BNC connector × 1 Amplifier terminal (M4) ×1	BNC connector × 1 Amplifier terminal (M4) ×1					
Dimension, M	ass:							
Туре		Dimensions (mm)	Mass.(kg)					
Flow transmitter	FSV	H240 × W247 × D134	5					
	FSSA	H50 × W348 × D34	0.4					
	FSSC	H88 × W480 × D53	1					
Detctor	FSSD	H90 × W320 × D52.5	0.6					
	FSSE	H67 × W78 × D84	1.2					
	FSSH	H205 × W530 × D52	1.6					
Signal cable	FLYD	ø7.3mm	90a/m					

External terminal of flow transmitter: plug terminal

PC Loader software

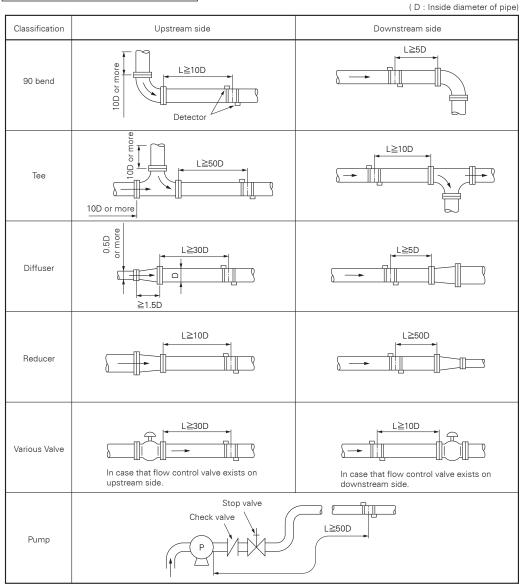
Provided as standard

•Compatible model is PC/AT compatible instrument.

- •Main functions: Software for Main unit parameter setting/ change on PC
- •OS: Windows 2000/XP/Windows 7 (Home Premium, Professional) or Windows 8 (Professional)
- •Memory requirement: 125MB min.
- •Disk unit: CD-ROM drive compatible with Windows 2000/ XP/Windows 7 (Home Premium, Professional) or Windows 8 (Professional)
- •Hard disk capacity: Minimum vacant capacity of 52MB or more

Note: Optional communication board (specified at the 5th digit of code symbols).

Note: Communication converter

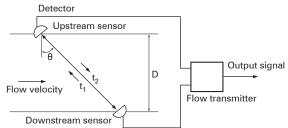

For the PC that supports RS-232C serial interface, RS-232C - RS-485 converter is needed for connecting the PC and main unit.

For the PC that does not support RS-232C serial interface, additionally, USB - RS232C converter is also needed.

<Recommendation>

[RS-232C - RS-485 converter] RC-770X(manufactured by SYSMEX RA)

[USB - RS-232C converter] USB-CVRS9 (manufactured by SANWA SUPPLY)

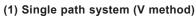


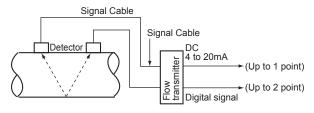
Conditions on straight pipe

(Note) The source : JEMIS-032

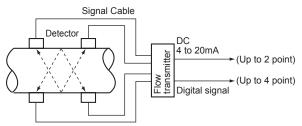
MEASURING PRINCIPLE

With ultrasonic pulses propagated diagonally between the upstream and downstream sensors, flow rate is measured by detecting the time difference obtained by the flow of fluid.

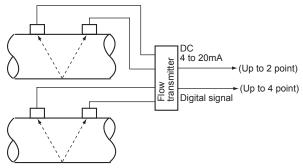


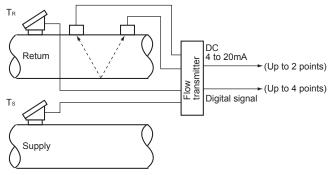

Lining

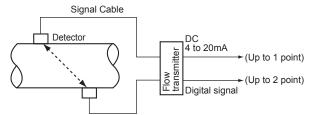
Ultra sonic


oscillator

CONFIGURATION DIAGRAM

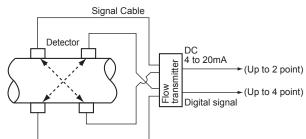



(3) 2-path system (V method)

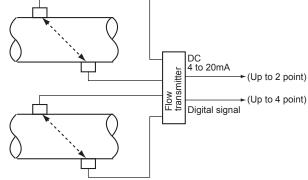

(5) 2-pipe system (V method)

(7) Energy flow measurement (V method)

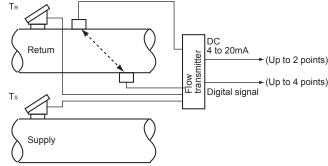
(2) Single path system (Z method)



Plastic wedge


Pipe

//////


(4) 2-path system (Z method)

(6) 2-pipe system (Z method)

(8) Energy flow measurement (Z method)

FSV-2, FSS, FLY

CODE SYMBOL

<Flow transmitter>

123	45	6	7	8		9	10	11	12	13	
FSV			1	2	-	L					Description
	S										 (Destination) (4th digit) Standard (Japanese) Standard (English)
	Y										 (Communication) (5th digit) None RS485
		A B									 (Use) (6th digit) 2-path/2-pipe Single path/energy
			1								 (Power supply) (7th digit) AC100 to 240V 50/60Hz
						L					 (Case structure) (9th digit) IP67
							Y A				 (Wire connection port) (10th digit) Weatherproof gland provided Union (for pilica) with gland
								Y			 (Combination with explosion-proof detector) (11th digit) *1 None Provided
									Y A B C	B C	 (Parameter setting) (12th digit) None Setting provided Setting provided + tag Tag (Mounting method) (13th digit) Wall mount Pipe mount

<deteo< th=""><th>cto</th><th>or</th><th>></th><th></th><th></th><th></th></deteo<>	cto	or	>			
1 2 3 4 5 FSS	56	7	8	10	11	Description
c						<senser type="">(4th digits) • ø50 to ø1200mm</senser>
1	1					<guide rail="">(5th digits) · Provided (Extendable rail type)</guide>
_	Y A C D					<mounting belt="">(6th digits) *3 None Stainless belt (1.5m×2) SS belt fasten with screws (1.0m×4) Wire ≤ s1500m (5m×2)</mounting>
		Y A C		Y		<acoustic coupler=""> (7th digit) None Silicon rubber (KE348) Silicone-free grease (HIGH-Z) Silicone grease (G40M) <watwe-proof treatment="">(9th digit) None</watwe-proof></acoustic>
				A	Y	Provided (with signal cable 10m) <tag plate=""> (10th digit) None Provided</tag>

*3) Please refer to the table 9 to serect the mounting belt at 6th digits.

[Table 9] How to select at 6th digits.

Mounting method	≤ø300mm	≤ø600mm	≤ø1200mm	
V method	A or C	С	D	
Z method	С	D	D	

Explanation of the extendable rail type detector

Unextended condition

available pipe diameter up to ø50 to ø300mm <V method>

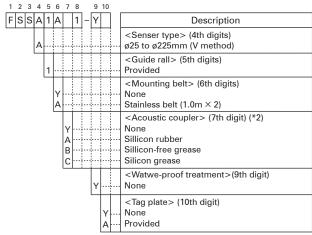
Extended condition

available pipe diameter up to ø600mm <V method>

■Installation of the supplied rail end.

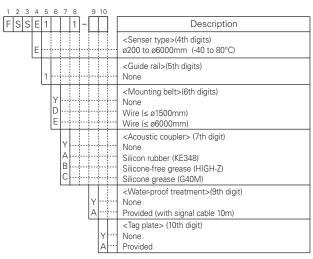
available pipe diameter up to ø1200mm <Z method>

Belt appearance for attachment of the detector.



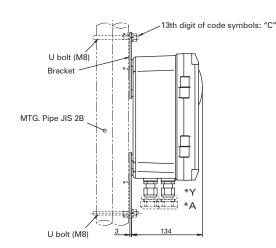
<Detector>

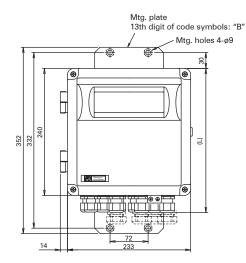
Note 1: HumiSeal coated PCB


Note 2: Normally select silicone rubber as acoustic coupler. Silicone rubber in tube (100g) is furnished. If you place an order for several units, 1 tube may suffice for every 5 units. Select silicone-free grease for semiconductor manufacturing equipment or the like that is vulnerable to silicone. The silicone-free grease is water-soluble and, therefore, cannot be used in environment exposed to water or on piping subjected to a condensation. Since the grease does not set, a periodic maintenance (cleaning, refilling every about 6 months at normal temperature) is necessary.

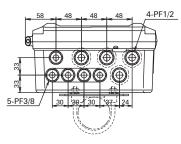
<Detector>

1 2 3 4 5 6 7 8 9 10	
F S S D 1 1 - Y	Description
D	<senser type="">(4th digits) ø13 to ø100mm (-40 to 100°C)</senser>
1	<guide rail="">(5th digits) Provided</guide>
Y	<mounting belt="">(6th digits) None Stainless belt (1.5m×2) SS belt fasten with screws (1.0m×4)</mounting>
Y A B C	<acoustic coupler=""> (7th digit) None Silicon rubber (KE348) Silicone-free grease (HIGH-Z) Silicone grease (G40M)</acoustic>
Y	<water-proof treatment="">(9th digit) None</water-proof>
Y	<tag plate=""> (10th digit) None Provided</tag>

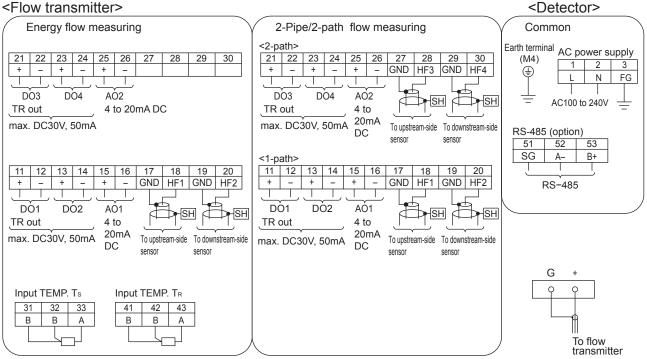

<Detector>


123	4	5	6	7	8	,	9	10	
FSS	Н	1			1	-	Υ		Description
	н								 <senser type="">(4th digits) ø50 to ø400mm (-40 to 200°C)</senser>
		1							 <guide rail="">(5th digits) Provided</guide>
			Y A C	 					 <mounting belt="">(6th digits) None Stainless belt (1.5m×2) SS belt fasten with screws (1.0m×4)</mounting>
				Y D					 <acoustic coupler=""> (7th digit) None High-temperature grease (KS62M)</acoustic>
							Y		 <water-proof treatment="">(9th digit) None</water-proof>
								Y A	 <tag plate=""> (10th digit) None Provided</tag>

<Signal cable>

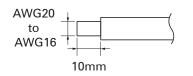

1 2 3 4 5 6 7 8	
FLYD 1	Description
D	Type of sensor (4th digit) for FSSA, FSSC, FSSD, FSSE, FSSH
	Cable length (5,6 and 7th digit)
0 0 5	5 m
0 1 0	10 m
0 1 5	15 m
0 2 0	20 m
0 2 5	25 m
0 3 0	30 m
0 3 5	35 m
0 4 0	40 m
0 4 5	45 m
0 5 0	50 m
0 5 5	55 m
0 6 0	60 m
065	65 m
070	70 m
075	75 m
080	80 m
085	85 m
090	90 m
095	95 m
100	100 m
110	110 m
1 2 0	120 m
1 3 0	130 m
140	140 m
150	150 m
Z Z Z	Others (contact us)

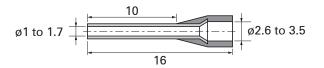
OUTLINE DIAGRAM (Unit:mm)



10th digit of the	Conduit connection		Applical	ole cable
code symbols		-	PF1/2	PF3/8
*Y	With waterproof gland	273	ø6 to 12	ø5 to 10
*A	Waterproof gland with union plug (for plica tube PV-5#17)	294	max. ø14	051010

CONNECTION DIAGRAM

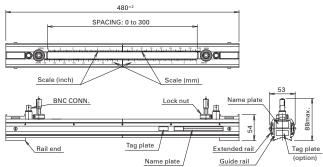

<Flow transmitter>

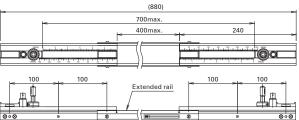

Usable wiring material

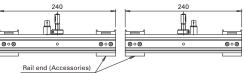
• Wire

Gauge: AWG20 (0.5mm²) to AWG16 (1.5mm²) Strip-off length: 10mm

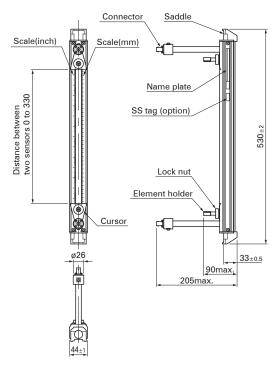
· Bar terminal Weidmüller www.weidmuller.com




OUTLINE DIAGRAM (Unit:mm)



To Flow transmitter


Detecter : Type FSSC

BNC connector

To Detector

SCOPE OF DELIVERY

- For 1-channel and 2-path version
- Detector (Type: FSS) ×2: provided with mounting fixture and acoustic coupler according to specified code of symbol. For type FSSE, cable adapter (15cm) is also provided.
- Flow transmitter (Type: FSV) ×1: provided with U-bolt and nuts for pipe mount.
- Signal cable (Type: FLY) 2 pairs
- CD-ROM (contains instruction manual, loarder software)
- For energy measurement version
- Detector (Type: FSS) ×1: provided with mounting fixture and acoustic coupler according to specified code of symbol. For type FSSE, cable adapter (15cm) is also provided.
- Flow transmitter (Type: FSV) ×1: provided with U-bolt and nuts for pipe mount.
- Signal cable (Type: FLY) 1 pair
- * Resistance bulb (Pt100, 3-wire) is needed.
- CD-ROM (contains instruction manual, loarder software)
- For 2-pipe version
- Detector (Type: FSS) ×2: provided with mounting fixture and acoustic coupler according to specified code of symbol. For type FSSE, cable adapter (15cm) is also provided.
- Flow transmitter (Type: FSV) ×1: provided with U-bolt and nuts for pipe mount.
- Signal cable (Type: FLY) 2 pairs
- · CD-ROM (contains instruction manual, loarder software)

ITEMS DESIGNATED ORDERING

- 1. Detector code symbols
- 2. Flow transmitter code symbols
- 3. Signal cable code symbols
- 4. Tag No. as necessary (up to 8 alphanumerical characters)
- 5. Code symbol for resistance bulb (Pt100, 3-wire)
- 6. If parameter setting is specified, send back the attached parameter specification table duly filled.

OPTIONAL ACCESSORIES

		Name	Drawing No.
	1	Silicone grease (G40M)	ZZP*45231N5
Γ	2	Silicone rubber (KE348W)	ZZP*45735N2
Γ	3	Silicone-free grease (HIGH-Z)	ZZP*TK7M0981P1
Г	4	High-temperature grease	77P*TK7G7983C1

Checked items before purchase

Following conditions may cause failure of the measurement or to reduce the accuracy by this flow meter.

Please consult and ask Fuji Electric for checking with actual equipment previously if you have hard to judge the appropriate application.

1)Fluid

- If fluid contains a large amount of bubbles (approx. 12vol% or more at 1m/s flow rate)
- If fluid has bad turbidity 10000(mg/L) or more,
- If fluid contains slurry or solid materials (about 5wt%)
- If flow rate is low Reynolds No.10000 or less,
- (reference: flow rate 5m³/h with ø100mm)
- If it is circulating oil, liquid medicine of low concentration, waste liquid and hot spring,
- 2)Pipe
- If inside pipe is rusty carbon steel pipe,
- · If inside pipe having adhering substances and sediment
- If outer surface of cast-iron pipe is rough,
- If pipe wall is tick such as ruinous pipe, (PP material 15mm or more, PVDF material 9mm or more)
- If it is SGPW pipe,
- If lining pipe is removed from pipe, (Teflon, PVC, Glass)
- If it is rubber pipe,
- 3) Length of the straight pipe
 - For accurate measurement, straight pipes are needed between up and down stream side of the measuring part.
 - Please meet the straight pipe conditions according item4.

Caution on use

- 1) Do not damage the sensor or signal mounted on the pipe.
- 2) Make sure to fill the fluid inside the pipe to measure
- When you use horizontal pipe, it is recommended to install the sensor horizontally.
- 4) When you use the grease as acoustic coupler to install the sensor for outdoor use, it is recommended to install the waterproof cover to prevent from the degradation.

<Parameter specification table Measurement mode: 1-path/energy measurement> 1/2

		Setting item	Initial value	Setting value	Setting range
ID No)		0000		ID No. is invalid when 0000 is selected.
Language Measurement mode			Japanese		English, Japanese, German, French, Spanish
			1 path		1 path, 2 path, 2 pipes
Calculation output		noutput	-	-	Average, Addition, Sub (CH1-CH2), Sub (CH2-CH1)
Opera	ation	mode	Normal		Normal, High speed
Syste	Operation mode System unit		Metric		Metric or Inch
		Flow unit	mੈ/h		L/s, L/min, L/h, L/d, kL/d, ML/d, m ³ /s, m ³ /min m ³ /h, m ³ /d, km ³ /d, Mm ³ /d, BBL/s, BBL/min BBL/h, BBL/d, kBBL/d, MBBL/d
	Unit	Total unit	m		mL, L, m ³ , km ³ , Mm ³ , mBBL, BBL, kBBL
	_	Temperature unit	S		°C, K, F
		Thermal unit	MJ/h		MJ/h, GJ/h, BTU/h, kBTU/h, MBTU/h, kW, MW
_		Total unit (thermal)	MJ		MJ, GJ, BTU, kBTU, MBTU, kWh, MWh
		Outer diameter Pipe material	60.00mm PVC		6.00 to 6200.00mm
		Pipe material	PVC		Carbon steel, Stainless, PVC, Copper, Cast iron, Aluminum, FRP, Ductile iron, PEEK, PVDF, Acrylic and PP Pipe sound velocity (Sound velocity: [m/s, ft/s])
SU		Wall thickness	4.00mm		4.00mm
onditio	setting	Lining material	No lining		No lining, Tar epoxy, Mortar, Rubber, Teflon, Pyrex glass, PVC
б	se se	Lining thickness			Lining S.V. (Sound velocity: [m/s, ft/s]
Measuring conditions	Process	Kind of fluid	Water		Water, seawater, dist. water, ammonia, alcohol benzene, bromide, ethanol, glycol, kerosene, milk, methanol, toluol, lube oil, fuel oil, petrol and refrigerant R410
		Viscosity	1.0038×10 ⁻⁶ m ² /s		Fluid S.V. (Sound velocity: [m/s, ft/s]
		Sensor mounting method	V method		V method, Z method
		Sensor type	FSSA		FSSA/FSSG,FLS 12/FLS 22,FSSC,FSG 32,
					FSG_31/FSG_41,FSSE/FSG_50,FSSF/FSG_9 1, FSD12,FSSD/FSD22,FSSH/FSD32
	Energy neasuremet	Energy mode	Used		Not used, Used
		Operation mode	Cooling		Cooling, Heating, Air-conditionning
		Thermal coefficient for cooling	4.186		1.000 to 9.999
	ш	Thermal coefficient for	4.123		1.000 to 9.999
	Dam	heating	5.0 sec		0.0 to 100.0sec
F	-	flow cut	0.15 m ² /h		0 to 5m/s in terms of flow velocity
	2011	Analog output 1 source channel	CH1 : Thermal flow		CH1: Flow rate, CH1: Thermal flow
		Analog output 2 source channel	CH1: Flow rate		CH1: Flow rate, CH1: Thermal flow
		Kind	Flow rate		Velocity, Flow rate
	put	Range type	Single		Single, Auto 2, Bi-dir, Bi-dir Auto 2
	output	Full scale 1	15.000 m ³ /h		0, ± 0.3 to ± 32 m/s in terms of flow velocity
S	Analog (Full scale 2	0.000 m [*] /h		0, ±0.3 to ±32m/s in terms of flow velocity
Output conditions	vna	Full scale 1 (thermal) Full scale 2 (thermal)	0.000 MJ/h 0.000 MJ/h		0.000000 to 99999999 0.000000 to 99999999
ndi	∢	Hysteresis	10.00 %		0.00 to 20.00%
8		Burnout (current)	Hold		Not used, Hold, Lower, Upper and Zero
thut		Burnout timer	10 sec		10 to 900sec
Out		Output limit low	-20 %		-20 to 0%
- [Output limit high	120 %		100 to 120%
Γ		Total mode	Stop		Start, Stop, Reset
		Total rate	0 m [*]		0.000000 to 99999999
	t	Total preset	0 m [*]		0.000000 to 99999999
	utp	Total rate (thermal)	0 MJ		0.000000 to 99999999
	Fotal output	Total preset (thermal)	0 MJ		0.000000 to 99999999
	Tota	Pulse width	50msec		5msec, 10msec, 50msec, 100msec, 200msec, 500msec, 1000msec
		Burnout (total)	Hold		Not used, Hold
1		Burnout timer	10 sec		10 to 900 sec

<Parameter specification table Measurement mode: 1-path/energy measurement> 2/2

		Setting item	Initial value	Setting value	Setting range
	Contact output	DO1 output type	Not used		Not used, +Total pulse, -Total pulse, Full scale 2, Alarm [All, Hardware fault, Process error] Flow switch Flow SW high [], Total switch [], AO range over, Pulse range over, -Flow direction, H: Total pulse (T), C: Total pulse (T), Full scale 2 (T), Flow switch (T) •Flow SW high [] •Flow SW high [], Total switch (T) [], AO range over (T), P: range over (T), Air-conditioning, Temp. alarm
		DO1 output operation	Active ON		Active ON, Active OFF
		DO2 output type	Not used		Same as "DO1 output type"
Suc		DO2 output operation	Active ON		Active ON, Active OFF
ditio		DO3 output type	Not used		Same as "DO1 output type"
ŭ		DO3 output operation	Active ON		Active ON, Active OFF
Ito		DO4 output type	Not used		Same as "DO1 output type"
Output conditions		DO4 output operation	Active ON		Active ON, Active OFF
0	Display	Content of display 1st Line	Thermal flow (MJ/h)		Velocity, Flow rate, Flow rate (%), +Total (Actual), +Total pulse, -Total (Actual), -Total Pulse, H: Total (thermal), H: Total pulse (T), C: Total (thermal), C: Total pulse (T), Thermal flow, Thermal flow (%), Supply temp., Return temp., Temp difference
		Decimal point position of display 1st line	****. ***		* ****** ** ***** *** **** **** **** ****
	Dis	Content of display 2nd Line	Flow rate (m/s)		Velocity, Flow rate, Flow rate (%), +Total (Actual), +Total pulse, -Total (Actual), -Total Pulse, H: Total (thermal), H: Total pulse (T), C: Total (thermal), C: Total pulse (T), Thermal flow, Thermal flow (%), Supply temp., Return temp., Temp difference
		Decimal point position of display 2nd line	**** ***		* ****** ** ***** *** **** **** **** ****
	Com	munication mode	RS-485		MODBUS
ation	Bauc	d rate	9600bps		9600bps, 19200bps, 38400bps
Communication	Parit	у	Odd		None, Odd, Even
Comr	Stop		1 bit		1 bit, 2 bits
	Stati	on No.	1		1 to 31
	LCD	backlight	ON		ON, OFF
LCD		ts-out time	5 min		0 to 99min
Ľ	3.11		+ +		

<Parameter specification table Measurement mode: 2-path> 1/2

		Setting item	Initial value	Setting value	Setting range
ID N	0		0000		ID No. is invalid when 0000 is selected.
	quage		Japanese		English, Japanese, German, French, Spanish
Measurement mode Calculation output			2 pipes		1 path, 2 path, 2 pipes
			Average		Average, Addition, Sub (CH1-CH2),
Calculation calput					Sub (CH2-CH1)
Actic	on mo	de	Normal		Normal, High speed
Syst	Action mode System unit		Metric		Metric or Inch
		Flow unit	mỉ/h		L/s, L/min, L/h, L/d, kL/d, ML/d, m ³ /s,
	÷				m^3/min , m^3/h , m^3/d , km^3/d , Mm^3/d , BBL/s,
	Unit				BBL/min, BBL/h, BBL/d, kBBL/d, MBBL/d
		Total unit	m		mL, L, m ³ , km ³ , Mm ³ , mBBL, BBL, kBBL
		Outer diameter	60.00mm		6.00 to 6200.00mm
		Pipe material	PVC		Carbon steel, Stainless, PVC, Copper, Cast
		ripe material	FVC		iron, Aluminum, FRP, Ductile iron, PEEK,
					PVDF, Acrylic and PP
s					Pipe sound velocity
on					(Sound velocity: [m/s, ft/s])
diti		Wall thickness	4.00mm		4.00mm
ő	_	Lining material	No lining		No lining, Tar epoxy, Mortar, Rubber, Teflon,
ğ	üng	3	3		Pyrex glass, PVC
iri,	sett				Lining S.V. (Sound velocity: [m/s, ft/s])
nse	ŝ	Lining thickness	_		0.01 to 100.00mm
Measuring conditions	Process setting	Kind of fluid	Water		Water, seawater, dist. water, ammonia, alcohol,
Me	ŭ.				benzene, bromide, ethanol, glycol, kerosene,
	<u>n</u>				milk, methanol, toluol, lube oil, fuel oil, petrol
					and refrigerant R410
					Fluid S.V. (Sound velocity: [m/s, ft/s])
		Viscosity	1.0038×10 ⁻⁶ m ² /s		0.001 to 999.999×10 ⁻⁶ m ² /s
		Sensor mounting method	V method		V method, Z method
		Sensor type	FSSA		FSSA/FSSG,FLS_12/FLS_22,FSSC,FSG_32,
					FSG_31/FSG_41,FSSE/FSG_50,FSSF/FSG_5
		_			1, FSD12,FSSD/FSD22,FSSH/FSD32
		nping	5.0 sec		0.0 to 100.0sec
	Low	flow cut	0.15 mੈ/h		0 to 5m/s in terms of flow velocity
		Analog output 1 source	CH1: Flow rate		CH1: Flow rate, CH2: Flow rate, CH3: Flow rate
		channel			(Note2)
		Analog output 2 source	CH2: Flow rate		CH1: Flow rate, CH2: Flow rate, CH3: Flow rate
		channel			(Note2)
	Analog output	Kind	Flow rate		Velocity, Flow rate
	ont	Range type	Single		Single, Auto 2, Bi-dir, Bi-dir Auto 2
	bc	Full scale 1	15.000 m [*] /h		0, ±0.3 to ±32m/s in terms of flow velocity
	Jalo	Full scale 2	0.000 m [*] /h		0, ±0.3 to ±32m/s in terms of flow velocity
	Ā	Hysteresis	10.00 %		0.00 to 20.00%
		Burnout (current)	Hold		Not used, Hold, Lower, Upper and Zero
		Burnout timer	10 sec		10 to 900sec
		Output limit low	-20 %		-20 to 0%
		Output limit high	120 %		100 to 120%
		Total mode	Stop		Start, Stop, Reset
	Ħ	Total rate	0 m ³		0.000000 to 99999999
ns	Total output	Total preset	0 m		0.000000 to 99999999
itio	ō	Pulse width	50msec		5msec, 10msec, 50msec, 100msec,
pu	ota				200msec, 500msec, 1000msec
Output conditions	⊢	Burnout (total)	Hold		Not used, Hold
put	L	Burnout timer	10 sec		10 to 900sec
Jut		DO1 source channel	CH1		CH1, CH2, CH3
0		DO1 output type	Not used		Not used, +Total pulse, -Total pulse, Full scale
					2, Alarm [All, Hardware fault, Process error]
					Flow switch
					□Flow SW high []
					□Flow SW low [],
					Total switch [],
	out				AO range over, Pulse range over, -Flow
	Contact output				direction
	ct c	DO1 output operation	Active ON		Active ON, Active OFF
	ntac	DO2 source channel	CH1		CH1, CH2, CH3
	Š	DO2 output type	Not used		Same as "DO1 output type"
		DO2 output operation	Active ON		Active ON, Active OFF
		DO3 source channel	CH1		CH1, CH2, CH3
		DO3 output type	Not used		Same as "DO1 output type"
		DO3 output operation	Active ON		Active ON, Active OFF
		DO4 source channel	CH1		CH1, CH2, CH3
			CH1 Not used		CH1, CH2, CH3 Same as "DO1 output type" Active ON, Active OFF

<Parameter specification table Measurement mode: 2-path> 2/2

	Setting item		Initial value	Setting value	Setting range
		Source channel of display 1st line	CH1		CH1, CH2, CH3
Output conditions		Content of display 1st line	Flow rate (m ² /h)		Velocity, Flow rate, Flow rate (%), +Total (Actual), +Total pulse, -Total (Actual), -Total Pulse
	Display	Decimal point position of display 1st line	**** ***		* ****** ** ***** *** **** **** **** ****
	Disp	Source channel of display 2nd line	CH2		CH1, CH2, CH3
OU		Content of display 2nd line	Flow rate (m [*] /h)		Velocity, Flow rate, Flow rate (%), +Total (Actual), +Total pulse, -Total (Actual), -Total Pulse
		Decimal point position of display 2nd line	**** ***		* ****** ** ***** *** **** **** **** ****
o	Com	munication mode	RS-485		MODBUS
iù c	Baud rate Parity		9600bps		9600bps, 19200bps, 38400bps
Communic ation			Odd		None, Odd, Even
a	Stop) bit	1 bit		1 bit, 2 bits
0	Station No.		1		1 to 31
0	LCD	backlight	ON		ON, OFF
LCD	Ligh	ts-out time	5 min		0 to 99min
_					

<Parameter specification table Measurement mode: 2-pipe> 1/2

		Setting item	Initial value		Setting			Setting range
ID No			0000	,	Setting	y value	-	ID No. is invalid when 0000 is selected.
	guage		Japanese					English, Japanese, German, French, Spanish
		nent mode	2 pipes					1 path, 2 path, 2 pipes
Calculation output			Average					Average, Addition, Sub (CH1-CH2),
Action mode			Normal					Sub (CH2-CH1) Normal, High speed
System unit			Metric					Metric or Inch
		Setting item	Initial value	Path 1 (C	:H1)	Pat	h 2 (CH2)	Setting range
		Flow unit	mੈ/h				<u> </u>	L/s, L/min, L/h, L/d, kL/d, ML/d, m ³ /s,
	Unit							m³/min, m³/h, m³/d, km³/d, Mm³/d, BBL/s,
	5							BBL/min, BBL/h, BBL/d, kBBL/d, MBBL/d
		Total unit	m					mL, L, m ³ , km ³ , Mm ³ , mBBL, BBL, kBBL
		Outer diameter	60.00mm					6.00 to 6200.00mm
		Pipe material	PVC					Carbon steel, Stainless, PVC, Copper, Cast
								iron, Aluminum, FRP, Ductile iron, PEEK, PVDF, Acrylic and PP
s								Pipe sound velocity
ion								(Sound velocity: [m/s, ft/s])
Measuring conditions		Wall thickness	4.00mm					4.00mm
cor	D	Lining material	No lining					No lining, Tar epoxy, Mortar, Rubber, Teflon,
ing	setting							Pyrex glass, PVC
suri	se	Lining thickness						Lining S.V. (Sound velocity: [m/s, ft/s]) 0.01 to 100.00mm
ea	Process	Kind of fluid	Water					Water, seawater, dist. water, ammonia, alcohol,
Σ	õ		Water					benzene, bromide, ethanol, glycol, kerosene,
	٩							milk, methanol, toluol, lube oil, fuel oil, petrol
								and refrigerant R410
		N.C. 11	4 0000 40 ⁻⁶ ²					Fluid S.V. (Sound velocity: [m/s, ft/s])
		Viscosity	1.0038×10 ⁻⁶ m ² /s					0.001 to 999.999×10 ⁻⁶ m ² /s
		Sensor mounting method	V method					V method, Z method
		Sensor type	FSSA					FSSA/FSSG,FLS_12/FLS_22,FSSC,FSG_32, FSG_31/FSG_41,FSSE/FSG_50,FSSF/FSG_5
								1, FSD12,FSSD/FSD22,FSSH/FSD32
		Setting item	Initial value	Path 1	Pat	th 2	Calculat	Setting range
				(CH1)	(Cł	H2)	ed value	
	Dam	nping	5.0 sec				(CH3) —	0.0 to 100.0sec
		flow cut	0.15 m ² /h				_	0 to 5m/s in terms of flow velocity
		Analog output 1 source	CH1: Flow rate					CH1: Flow rate, CH2: Flow rate, CH3: Flow rate
		channel						(Note2)
		Analog output 2 source	CH2: Flow rate					CH1: Flow rate, CH2: Flow rate, CH3: Flow rate
		channel Kind	Flow rate				Flow	(Note2) Velocity, Flow rate
	out	KING	FIOWTALE				rate	
	Analog output	Range type	Single					Single, Auto 2, Bi-dir, Bi-dir Auto 2
	b	Full scale 1	15.000 m [*] /h					0, ±0.3 to ±32m/s in terms of flow velocity
	nal	Full scale 2	0.000 m [*] /h					0, ±0.3 to ±32m/s in terms of flow velocity
	∢	Hysteresis	10.00 %					0.00 to 20.00%
		Burnout (current)	Hold					Not used, Hold, Lower, Upper and Zero
		Burnout timer	10 sec					10 to 900sec
		Output limit low	-20 % 120 %					-20 to 0% 100 to 120%
6		Output limit high Total mode	Stop					Start, Stop, Reset
üo		Total rate	0 m ²					0.000000 to 99999999
ndit	tput	Total preset	0 m ²		<u> </u>			0.000000 to 99999999
cor	out	Pulse width	50msec		<u> </u>			5msec, 10msec, 50msec, 100msec,
out	Fotal output							200msec, 500msec, 1000msec
Output conditions	Ĕ	Burnout (total)	Hold		L			Not used, Hold
0		Burnout timer	10 sec					10 to 900sec
		DO1 source channel	CH1					CH1, CH2, CH3
		DO1 output type	Not used					Not used, +Total pulse, -Total pulse, Full scale
								2, Alarm [All, Hardware fault, Process error] Flow switch
								□Flow SW high []
	Ħ							□Flow SW low [],
	utp							Total switch [],
	х о							AO range over, Pulse range over, -Flow direction
	Contact output	DO1 output operation	Active ON					Active ON, Active OFF
	Co	DO2 source channel	CH1					CH1, CH2, CH3
	1	DO2 output type	Not used	1				Same as "DO1 output type"
		DO2 output operation	Active ON					Active ON, Active OFF
		DO3 source channel	CH1	· ·				CH1, CH2, CH3
		DO3 source charmen						
		DO3 output type DO3 output operation	Not used Active ON					Same as "DO1 output type" Active ON, Active OFF

<Parameter specification table Measurement mode: 2-pipe> 2/2

	Setting item		Initial value	Setting value	Setting range
		DO4 source channel	CH1		CH1, CH2, CH3
		DO4 output type Not used			Same as "DO1 output type"
Output conditions		DO4 output operation	Active ON		Active ON, Active OFF
		Source channel of display 1st line	CH1		CH1, CH2, CH3
		Content of display 1st line	Flow rate (m ² /h)		Velocity, Flow rate, Flow rate (%), +Total (Actual), +Total pulse, -Total (Actual), -Total Pulse
out cor	olay	Decimal point position of display 1st line	**** ***		* ****** ** *****, *** ****, **** ****
Outp	Display	Source channel of display 2nd line	CH2		CH1, CH2, CH3
		Content of display 2nd line	Flow rate (m ² /h)		Velocity, Flow rate, Flow rate (%), +Total (Actual), +Total pulse, -Total (Actual), -Total Pulse
		Decimal point position of display 2nd line	**** ***		* ******, ** *****, *** ****, ****, ****, ****, ****, ****, ****, ****, ****, ******
0	Corr	munication mode	RS-485		MODBUS
uni	Bau	d rate	9600bps		9600bps, 19200bps, 38400bps
ation	Parit	ty	Odd		None, Odd, Even
Communic ation	Stop	bit	1 bit		1bit, 2 bits
0	-	on No.	1		1 to 31
0	LCD	backlight	ON		ON, OFF
LCD	Ligh	ts-out time	5 min		0 to 99min

Note1: When total pulse output has been selected for DO1, DO2, DO3, DO4 specify total pulse value and total pulse width so that conditions 1 and 2 shown below are satisfies.

Condition 1 :	Flow span-1*[m ³ /s]	<	100[Hz]	Condition 2 : -	Flow span-1*[m ³ /s]	<	1000
Condition 1.	total pulse value*[m ³]		Condition 2.	total pulse value*[m ³]	=	$2 \times \text{total pulse width [ms]}$	

* In the case of 2 ranges, perform calculations using either flow span-1 or flow span-2, whichever is greater.

Note1: The definition of channels

Channel 1 (CH1) is assigned for the output from path 1.

Channel 2 (CH2) is assigned for the output from path 2.

Channel 3 (CH3) is assigned for the calculation output (any of average value, added value, and subtracted value).

【備考】

▲ Caution on Safety

*Before using this product, be sure to read its instruction manual in advance.

International Sales Div

Sales Group Gate City Ohsaki, East Tower, 11-2, Osaki 1-chome, Shinagawa-ku, Tokyo 141-0032, Japan http://www.fujielectric.com Phone: 81-3-5435-7280, 7281 Fax: 81-3-5435-7425 http://www.fijielectric.com/products/instruments/