Więcej niż automatyka

SELF-ACTUATING DIFFERENTIAL PRESSURE REDUCING REGULATORS WITH SOLENOID VALVES TYPE ZSN10

APPLICATION AREA:

These regulators are meant to maintain the presettable differential pressure in technological circuits that are connected to either the inlet or the outlet of the regulator valve. The regulator cutoffs the low when the control voltage signal is delivered o when the control voltage disappears. These devices are used in heating systems and industrial facilities to control flow of cold or hot water, steam, air and non-flammable gases. Application for other utilities needs authorization of the manufacturer.

DESIGN:

The regulator consists of four detachable major subassemblies: the flow control valve (01), actuator (02), adjusting unit (3) and solenoid valve (05).

The flow control valve is of the single-ported type

Valve – single-ported, with a balanced plug.

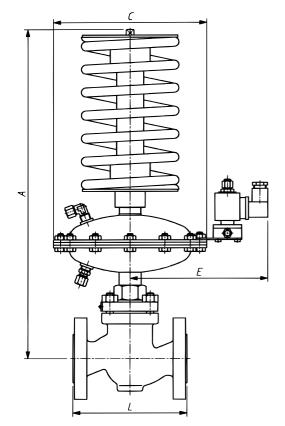
Body connections – flanged, with mating surface and gasket excess, to $PN\text{-}EN\ 1092\text{-}1:2006$ and

PN-EN 1092-2:1999 for PN10; 16; 25; 40

Face-to-face length to PN-EN 60534-3-1:2000 - Series 1 - for PN10; 16; 25; 40; Series 37 - for CL150; Series 38 - for CL300.

Membrane actuator (with active area of the membrane of 160 cm 2 or 320 cm 2) with half-casings bolted together. Leakage class of the valve of bubble grade (VI class to PN-EN 60534-4) – "soft" seat - PTFE or VMQ (ECOSIL). The adjusting unit for the presettable differential pressure combines three pre tensioned springs and in coaxially installed with both the valve and the actuator.

VARIANTS:


With regard to resistance of the actuator components to corrosion:

- standard design (ZSN10.1) carbon steel with protective coatings,
- special design (ZSN10.2) acid resistant (stainless) steel

37-700 Przemyśl, 23 Obozowa Str. tel. +48 16 678 66 01, fax +48 16 678 65 24 marketing@polna.com.pl, www.polna.com.pl

60 37 51 29 02 50 50

DIMENSIONS AND WEIGHT

OPERATION PRINCIPLE:

The differential pressure is maintained in two operation modes:

- without delivering the voltage signal to the solenoid valve (05) diagrams 1 and 3,
- with delivering the voltage signal to the solenoid valve (05) diagrams 2 and 4

The switchover from the state when the pressure difference is maintained to flow cutoff is carried out after delivering the control voltage signal to the valve solenoid (05) – point 1, or after the control voltage disappearing – point 2.

When de-energized, the regulator valve remains open. The higher pressure pulse of the maintained pressure difference is delivered via the solenoid valve (04) and nozzle (51). The lower pressure pulse is delivered via the pulse line via the nozzle (50) to the area below the actuator membrane. Rise of the maintained pressure difference above the desired value that is set by tension of the spring (60) in the adjusting unit (03) results in deflection of the membrane (29) and consequential movement of the actuator stem (37). The valve plug (5) is being closed until the moment when the desired differential pressure in the actuator is restored to the value that has been set with the adjusting unit. When the regulator is installed on the feeding pipeline, the sampling points for the differential pressure should be located downstream the outlet of the regulator valve. Otherwise, when the regulator is installed on the return pipeline, the sampling points for the differential pressure should be located upstream the intlet of the regulator valve.

DN	А	L	Valve weight (01)		
	[m	[kg]			
15		130	4,0		
20	470	150	5,1		
25		160	5,6		
32	485	180	8,5		
40	490	200	10,6		
50	495	230	14		
65	605	290	23		
80	003	310	29		
100	615	350	44		

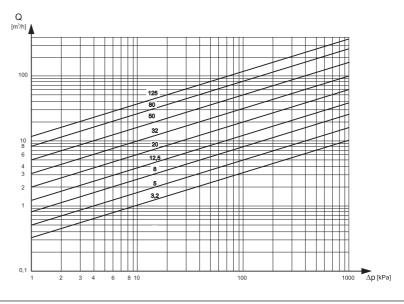
Contractor		Disabassas effect	Weight			
Spring range [kPa]	C [mm]	Diaphragm effec- tive area[cm ²]	Actuator Adjuster (03		ter (03)	
[Ki u]	[]	tive died[em]	(02)	DN 1550	DN 65100	
1040	282	320	9,1	2,4	2,8	
2080	202			2.2	3,6	
40160	215	160	4,4	3,2		
80320	∠15 			5,0	6,3	

TECHNICAL PARAMETERS

	DN	15	20	25	32	40	50	65	80	100
	full flow	3,2	5	8	12,5	20	32	50	80	125
K _{VS} 1)		1	1,6	2,5						
[m³/h]	reduced flow	1,6	2,5	3,2	5	8	12,5	20	32	50
		2,5	3,2	5						
	Stroke [mm]		6		8		12		14	
No	ise coefficient Z	0,65 0,6 0,55 0,45				0,35		35		
Cont	rol characteristics	proportional								
Spri	ing range [kPa] ²⁾	1040; 2080; 40160; 80320								
	n pressure in actuator chamber [bar]	20								
Allowed pre	essure drop in valve [bar]	12 10								
		valve body in grey iron PN 16								
Valve	nominal pressure	valve body in spheroidal iron PN 16; PN 29 valve body in carbon steel and stainless steel PN 16; PN 29				6; PN 25; PI	V 40			
						6; PN 25; PI	V 40			
		steam					200			
Maximum medium temperature [°C]		water					200			
	gases 80									

¹⁾ other values of KVS - upon request.

MATERIALS as per PN

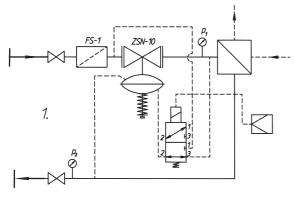

Regulator	ZSN 10.1	ZSN 10.2				
VALVE (01)						
Body	grey iron EN-GJL-250 spheroidal iron EN-GJS-400-18LT carbon steel GP240GH (1.0619) stainless steel GX5CrNiMo 19-11-2 (1.4408)					
Plug and seat						
Guide bushing	- X6CrNiMoTi 17-12-2 (1.4571)					
Sealing	EPDM ³⁾					
	ACTUATOR (02)					
Body	carbon steel S235JRG2C (1.0122) stainless steel X6CrNiTi 18-10 (1.4541)					
Stem	X17CrNi 16-2 (1.4057)					
Diaphragm	EPDM + polyester fabric ³⁾					
Packing	EPDM ³⁾					
ADJUSTING UNIT (03)						
Components of the adjusting unit	carbon steel C45 (1.0503)					
Spring	spring steel 60Si7					

³⁾ other materials – depending on the handled fluid.

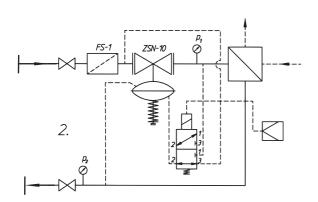
WORKING PRESSURE, WORKING TEMPERATURES AND WORKING PRESSURES

Material marking: ② - EN-GJS-400-18LT 1) - EN-GJL 250 (3) -GP240GH (1.619) (4) - GXSCrNiMo 19-11-2 (1.4408) [MPa] PN 40 4,0 (3)(4) 3,0 PN 25 234 2,5 2.0 234 PN 16 1.5 1 1,0 **t**, [°C] 100 120

FLOW DIAGRAM FOR WATER


²⁾ other ranges - upon request.

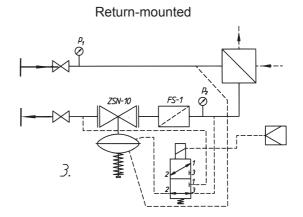
INSTALLATION


The regulator should be installed on a horizontal section of pipeline. Flow direction must match the arrow on the valve body. When temperature of the handled fluid is below 100°C, position of the regulator is discretional whereas at higher temperatures position of installation with the adjusting unit (03) looking downward is recommended. To assure trouble-free operation of the regulator, a mesh strainer FS1 should be installed upstream of the unit.

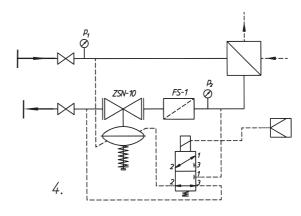
APPLICATION EXAMPLE

Monitoring Δ p=p₁-p₂ Supply mounted

- existing connections
- ---- connections to be added (pipe Ø 6 x1)



- existing connections
- ---- connections to be added (pipe \varnothing 6 x1)


ACCESSORIES

Delivered:

- nakrętka i pierścień zacinający do rurki impulsowej,

- existing connections
- ---- connections to be added (pipe Ø 6 x1)

- existing connections
- ---- connections to be added (pipe Ø 6 x1)

Optional (ordered separately):

- strainer FS1,
- straight connection pipes Ø 6×1
- connection stub NPT 1/4",
- impulse tube \emptyset 6×1,
- adjustment wrench.

ORDER PLACEMENT

Orders must contain: full name and design option of the regulator, i.e. ZSN10.1 or ZSN 10.2, nominal diameter DN, nominal pressure PN, flow coefficient K_{vs} , material for the body and range of settings.

Example of order:

Differential pressure regulator ZSN 10.1 – DN20; PN16; K_{vs} 5; spheroidal iron; 40 ... 160 [kPa]